Alzhéimer, párkinson y… ¿un mismo origen?

¿Y si tanto el alzhéimer y las demás demencias, como el párkinson, el glaucoma, la ELA y quién sabe cuántas implacables condenas más, compartieran un mismo origen? ¿Y si fueran síntomas o distintas manifestaciones de la misma condición subyacente, cuyo talón de Aquiles, precisamente, son los niveles bajos de glucosa y de insulina en sangre que nos regala la dieta cetogénica… lo que explicaría que esta, efectivamente, funcione?


¿Quieres escuchar los episodios antes que nadie? Suscríbete al podcast en ivoox.

 


Referencias

(por orden de aparición)

Si quisieras ahondar en el tema o también ansías blindar tu cerebro a las despiadadas demencias (y ponérselo difícil a las demás enfermedades neurodegenerativas), echa un ojo al programa Blinda tu cerebro (que está disponible en libro digital o papel, cursillo de vídeo presentaciones y audiolibro en formato podcast semanal).

Zhu, H., Bi, D., Zhang, Y., Kong, C., Du, J., Wu, X., Wei, Q., & Qin, H. (2022). Ketogenic diet for human diseases: The underlying mechanisms and potential for clinical implementations. Nature: Signal Transduction and Targeted Therapy, 7(1), 11. https://doi.org/10.1038/s41392-021-00831-w

No dejes de perderte por la web de la Dra. Ede («Diagnóstico Dieta: donde la nutrición se encuentra con el sentido común») si te defiendes con el inglés. Es una keto-mina de oro rigurosa, pero inspiradora y mordaz.

 Ede, G. (2019). Parkinson’s, Alzheimer’s, and the New Science of Hope | Psychology Today. https://www.psychologytoday.com/gb/blog/diagnosis-diet/201906/parkinsons-alzheimers-and-the-new-science-hope

Krashia, P., Nobili, A., & D’Amelio, M. (2019). Unifying Hypothesis of Dopamine Neuron Loss in Neurodegenerative Diseases: Focusing on Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 12, 123. https://doi.org/10.3389/fnmol.2019.00123

Bredesen, D. (2021). El Fin del Alzhéimer: El Primer Protocolo Para Mejorar La Cognición Y Revertir El Deterioro Cognitivo a Cualquier Edad. Disponible en Amazon.

Daulatzai, M. A. (2017). Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. Journal of Neuroscience Research, 95(4), 943-972. https://doi.org/10.1002/jnr.23777

Dineley, K. T., Jahrling, J. B., & Denner, L. (2014). Insulin Resistance in Alzheimer’s Disease. Neurobiology of disease, 72PA, 92-103. https://doi.org/10.1016/j.nbd.2014.09.001

Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y., & Weiner, M. W. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 71(4), 441. https://doi.org/10.1136/jnnp.71.4.441

 Sterling, N. W., Lewis, M. M., Du, G., & Huang, X. (2016). Structural Imaging and Parkinson’s Disease: Moving Toward Quantitative Markers of Disease Progression. Journal of Parkinson’s Disease, 6(3), 557-567. https://doi.org/10.3233/JPD-160824

Tan, J., Digicaylioglu, M., Wang, S. X. J., Dresselhuis, J., Dedhar, S., & Mills, J. (2019). Insulin attenuates apoptosis in neuronal cells by an integrin-linked kinase-dependent mechanism. Heliyon, 5(8), e02294. https://doi.org/10.1016/j.heliyon.2019.e02294

Hart, B. (2022). Have Scientists Been Wrong About Alzheimer’s for Decades? Intelligencer. https://nymag.com/intelligencer/2022/08/have-scientists-been-wrong-about-alzheimers-for-decades.html

Bredesen D. E. (2014). Reversal of cognitive decline: a novel therapeutic program. Aging, 6(9), 707–717. https://doi.org/10.18632/aging.100690

Piller, C. (2022). Potential fabrication in research images threatens key theory of Alzheimer’s disease. (2022). Science. Vol 377, Issue 6604. https://www.science.org/content/article/potential-fabrication-research-images-threatens-key-theory-alzheimers-disease

 Lesné, S., Koh, M. T., Kotilinek, L., Kayed, R., Glabe, C. G., Yang, A., Gallagher, M., & Ashe, K. H. (2006). A specific amyloid-β protein assembly in the brain impairs memory. Nature, 440(7082), 352-357. https://doi.org/10.1038/nature04533

 Tan, R. H., Kril, J. J., Yang, Y., Tom, N., Hodges, J. R, … & Halliday, G. M. (2017). Assessment of amyloid β in pathologically confirmed frontotemporal dementia syndromes. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 9, 10-20. https://doi.org/10.1016/j.dadm.2017.05.005

Medeiros, R., Baglietto-Vargas, D., & LaFerla, F. M. (2011). The role of tau in Alzheimer’s disease and related disorders. CNS Neuroscience & Therapeutics, 17(5), 514-524. https://doi.org/10.1111/j.1755-5949.2010.00177.x

Riederer, P., Berg, D., Casadei, N., Cheng, F., Classen, J., … & Monoranu, C. (2019). α-Synuclein in Parkinson’s disease: Causal or bystander? Journal of Neural Transmission, 126(7), 815-840. https://doi.org/10.1007/s00702-019-02025-9

Guo, L., Salt, T. E., Luong, V., Wood, N., Cheung, W., … & Cordeiro, M. F. (2007). Targeting amyloid-beta in glaucoma treatment. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13444-13449. https://doi.org/10.1073/pnas.0703707104

Chiasseu, M., Cueva Vargas, J. L., Destroismaisons, L., Vande Velde, C., Leclerc, N., & Di Polo, A. (2016). Tau Accumulation, Altered Phosphorylation, and Missorting Promote Neurodegeneration in Glaucoma. The Journal of Neuroscience, 36(21), 5785-5798. https://doi.org/10.1523/JNEUROSCI.3986-15.2016

 Faiq, M. A., & Dada, T. (2017). Diabetes Type 4: A Paradigm Shift in the Understanding of Glaucoma, the Brain Specific Diabetes and the Candidature of Insulin as a Therapeutic Agent. Current Molecular Medicine, 17(1), 46-59. https://doi.org/10.2174/1566524017666170206153415

 Watson, G. S., Peskind, E. R., Asthana, S., Purganan, K., Wait, C., Chapman, D., Schwartz, M. W., Plymate, S., & Craft, S. (2003). Insulin increases CSF Abeta42 levels in normal older adults. Neurology, 60(12), 1899-1903. https://doi.org/10.1212/01.wnl.0000065916.25128.25

Galizzi, G., & Di Carlo, M. (2022). Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link between Dysmetabolism and Neurodegeneration. Biology, 11(6), 943. https://doi.org/10.3390/biology11060943

Mullins, R. J., Diehl, T. C., Chia, C. W., & Kapogiannis, D. (2017). Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 9, 118. https://doi.org/10.3389/fnagi.2017.00118

Choi, A., Hallett, M., & Ehrlich, D. (2021). Nutritional Ketosis in Parkinson’s Disease—A Review of Remaining Questions and Insights. Neurotherapeutics, 18(3), 1637-1649. https://doi.org/10.1007/s13311-021-01067-w

Hsieh, C.-F., Liu, C.-K., Lee, C.-T., Yu, L.-E., & Wang, J.-Y. (2019). Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Nature, 9(1), 840. https://doi.org/10.1038/s41598-018-37215-0

Fournet, M., Bonté, F., & Desmoulière, A. (2018). Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging and Disease, 9(5), 880-900. https://doi.org/10.14336/AD.2017.1121

Kim, B., & Feldman, E. L. (2015). Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Experimental & Molecular Medicine, 47(3), e149. https://doi.org/10.1038/emm.2015.3

Sasaki-Hamada, S., Sanai, E., Kanemaru, M., Kamanaka, G., & Oka, J.-I. (2022). Long-term exposure to high glucose induces changes in the expression of AMPA receptor subunits and glutamate transmission in primary cultured cortical neurons. Biochemical and Biophysical Research Communications, 589, 48-54. https://doi.org/10.1016/j.bbrc.2021.11.108

Krashia, P., Nobili, A., & D’Amelio, M. (2019). Unifying Hypothesis of Dopamine Neuron Loss in Neurodegenerative Diseases: Focusing on Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 12, 123. https://doi.org/10.3389/fnmol.2019.00123

Song, J., & Kim, J. (2016). Degeneration of Dopaminergic Neurons Due to Metabolic Alterations and Parkinson’s Disease. Frontiers in Aging Neuroscience, 8. https://www.frontiersin.org/articles/10.3389/fnagi.2016.00065